ทฤษฎีคลื่นแม่เหล็กไฟฟ้า

คลื่นแม่เหล็กไฟฟ้าเป็นพลังงานรูปหนึ่งที่ส่งผ่านจากดวงอาทิตย์โดยการแผ่รังสี พลังงานแม่เหล็กไฟฟ้า ประกอบไปด้วย สนามแม่เหล็กและสนามไฟฟ้า โดยที่ทิศทางของสนามไฟฟ้าและทิศทางของสนามแม่เหล็ก มีการเคลื่อนที่ของคลื่นตั้งฉากซึ่งกันและกัน (แบบฮาร์โมนิค (Hamonic) คือ มีช่วงซ้ำและจังหวะเท่ากันในเวลาหนึ่งและมีความเร็วเท่าแสง) ซึ่งมีความสัมพันธ์กันดังนี้


คลื่นแม่เหล็กไฟฟ้าประกอบไปด้วยคลื่นที่มีความยาวช่วงคลื่นในหลากหลายช่วงคลื่น ตั้งแต่สั้นที่สุดไปจนถึงยาวที่สุด ซึ่งในแต่ละช่วงคลื่นจะมีคุณสมบัติเฉพาะตัว ความยาวคลื่นและความถี่คลื่นมีความสัมพันธ์กันแบบผกผัน กล่าวคือ ถ้าความยาวคลื่นมาก ความถี่จะน้อย หรือความยาวคลื่นน้อย ความถี่จะมาก โดยทั่วไป หน่วยวัดความยาวคลื่นที่ใช้ในงานรีโมทเซนซิง มักใช้เป็น ไมโครเมตร



ตาราง แสดงประเภทของคลื่นแม่เหล็กไฟฟ้า

ประเภทคลื่นแม่เหล็กไฟฟ้า
ความยาวช่วงคลื่น
ความถี่
คุณสมบัติ
1. รังสีแกมมา (gamma ray)
< 0.03 nm.
> 3,000 THz
ถูกดูดกลืนทั้งหมดโดยชั้นบรรยากาศชั้นบน จึงไม่ได้นำมาใช้ประโยชน์ในการสำรวจจากระยะไกล
2. รังสีเอกซ์ (x-ray)
0.03-3.0 nm.
> 3,000 THz
ถูกดูดกลืนทั้งหมดโดยชั้นบรรยากาศชั้นบนเช่นกัน จึงไม่ได้นำมาใช้ประโยชน์ในการสำรวจจากระยะไกล
3. รังสีอัลตราไวโอเลต (ultraviolet)
0.03-0.4 mm
750-3,000 THz
ช่วงคลื่นสั้นกว่า 0.3 mm ถูกดูดซึมทั้งหมดโดยโอโซน (O3) ในบรรยากาศชั้นบน
4. คลื่นอัลตราไวโอเลตที่ใช้ในการถ่ายภาพ
(photographic ultraviolet band)
0.03-0.4 mm
750-3,000 THz
ช่วงคลื่นนี้สามารถผ่านชั้นบรรยากาศได้ สามารถถ่ายภาพด้วยฟิล์มถ่ายรูป แต่มีการกระจายในชั้นบรรยากาศเป็นอุปสรรค
5. คลื่นตามองเห็น (visible)
0.4-0.7 mm
430-750 THz
เป็นช่วงคลื่นที่บันทึกด้วยฟิล์มถ่ายภาพและอุปกรณ์บันทึกภาพได้ดี โดยเป็นช่วงคลื่นที่ดวงอาทิตย์มีการสะท้อนพลังงานสูงสุด (reflected energy peak ที่ 0.5 mm) ช่วงคลื่นนี้แบ่งออกได้เป็น 3 กลุ่มที่ตอบสนองต่อสายตามนุษย์ คือ
ประเภทคลื่นแม่เหล็กไฟฟ้า
ความยาวช่วงคลื่น
ความถี่
คุณสมบัติ
0.4-0.5 mm. ช่วงคลื่นสีน้ำเงิน
0.5-0.6 mm. ช่วงคลื่นสีเขียว
0.6-0.7 mm. ช่วงคลื่นสีแดง
ซึ่งเป็นแม่สีแสงที่ก่อให้เกิดสีต่างๆ ที่เรามองเห็นในธรรมชาติ
6. คลื่นอินฟราเรด (infrared)
แบ่งออกเป็นช่วงคลื่นย่อย ดังนี้
ช่วงคลื่นระหว่าง 0.7-0.9 mmสามารถถ่ายภาพด้วยฟิล์มพิเศษ เรียกว่า photographic infrared film และเป็นช่วงที่โลกสะท้อนพลังงานสูงสุดที่9.7 mm
6.1 อินฟราเรดใกล้ (near infrared)
0.7-1.3 mm
230-430 THz
มีประโยชน์ต่อการศึกษาด้านพืชพรรณ การแยกแยะดินกับน้ำ
6.2 อินฟราเรดคลื่นสั้น
(short wave infrared)
1.3-3.0 mm
100-230 THz
มีประโยชน์ต่อการศึกษาด้านการใช้ที่ดินแร่ธาตุ
6.3 อินฟราเรดคลื่นกลาง
(middle wave infrared)
3.0-8.0 mm
38-100 THz
มีประโยชน์ด้านการแยกแยะแร่ธาตุวัตถุสะท้อนแสงสูง
6.4 อินฟราเรดความร้อน
(thermal infrared)
8.0-14.0 mm
22-38 THz
ใช้ศึกษาโรคพืชเนื่องจากความร้อน ความแตกต่างของความร้อนในพื้นที่ศึกษา ความแตกต่างของความชื้นของดิน
6.5 อินฟราเรดไกล (far infrared)
14.0 mm – 1 mm.
0.3-22 THz
ไม่ปรากฏการประยุกต์ใช้เพราะคลื่นนี้จะถูกชั้นบรรยากาศดูดกลืนจนเกือบทั้งหมด
7. คลื่นไมโครเวฟ (microwave)
แบ่งตามขนาดความยาวคลื่นได้
กลุ่มย่อย
0.1-30.0 cm.
เป็นช่วงคลื่นยาวที่สามารถทะลุผ่านหมอก เมฆ และฝนได้ สามารถบันทึกข้อมูลได้ทั้งระบบพาสซีฟและแอคทีฟ
7.1 ช่วงคลื่นขนาดมิลลิเมตร
1.0-10.0 mm.
30-300 GHz
7.2 ช่วงคลื่นขนาดเซนติเมตร
1.0-10.0 mm.
3-30 GHz
7.3 ช่วงคลื่นขนาดเดซิเมตร
0.1-1.0 dm.
0.3-3 GHz
8. คลื่นเรดาร์ (radar)
มีแบ่งย่อยเป็นช่วงคลื่นที่สำคัญ ดังนี้
0.1-30.0 cm.
30-300 MHz
เป็นระบบแอคทีฟ ที่สามารถทะลุผ่านหมอก เมฆ และฝนได้
8.1 Ka band
10 mm.
8.2 X band
30 mm.
8.3 L band
25 cm.
9. คลื่นวิทยุ (radio)
1 m. – 100 km.
3 KHz–300 MHz
เป็นช่วงคลื่นที่ยาวที่สุด บางครั้งมีเรดาร์อยู่ในช่วงนี้ด้วย


ไม่มีความคิดเห็น:

แสดงความคิดเห็น